

O&M planning for offshore wind farms

Haaken Annfelt Moe, PhD, Oceaneering

Anne Karin Magnusson, PhD, Norwegian Meteorological Office

Icewind WP3.2 Offshore accessibility and maintenance

- Study accessibility for maintenance vessels to offshore wind turbines using specific wave and wind climates
- Using accessibility model, improve maintenance strategies for offshore wind turbines

Questions

- What is the impact of wind and wave climate on access?
- How is turbine availability affected by vessel choice?
- Maintenance planning when taking access into consideration?

Outline

- How vessels are modeled and wave data used
- How wind turbines are modeled
- Interaction and results
- Perspectives

Calculating access

- 58 years of hindcast wind and wave data from NORA10 at 2 locations.
- Use RAOs and wave data to calculate weather windows
 - No of periods where the turbines are unaccessible
 - Expected duration of non access period

RAO – response amplitude operators

Figure 2.1.1 – Definition of coordinate system and positive motions

Wave input data:

Using either Total sea / Combined Sea / Wave spectra

- Different kind of sea states:
 - Unidirectional
 - Bimodal (or several wavesystems)
- Vessel behaviour can be evaluated from
 - **TOTAL sea:** [Hs,Tp,DDP]_{TotSea}
 - WIND SEA & SWELL parameters
 [Hs,Tp,DDp] for Windsea and Swell (extracted from the 2D spectrum)

LADDER ORIENTATION: → Ladders are often installed so that vessel head against dominant wind or wave direction. At NORA10SW: current is most important: ladder orientation = 330 degrees. At HYWIND: major wind direction: 350 degrees.

Vessel respons using hindcast weather data

Responses are evaluated for every 3 hours from the NORA10 database, but only for Hs ≤ 3m. This is 94.98% of the time at location NORA10SW.

COMPARING HEAVE USING TOTAL SEA OR COMBINED SEA:

a) H = 1.3 · Hs is used in RAO functions Assuming Rayleigh distribution: 95% of individual waves are below 1.3.Hs.

b) Combining respons from windsea and swell:

R = HEAVE [m]:
$$R_{comb} = \sqrt{\frac{Rwi^2 + Rsw^2}{2}}$$

Weather windows

Counting number of weather windows and their durations

Weather window = sufficiently small vessel movement

Summer: April – September

Winter: October - March

PITCH vs HEAVE, 2 VESSELS

Using for example a combination of Heave and pitch, or also with Roll:

Cases (percentage of period with Hs<3m)	VESSEL A	VESSEL B	Increase in
Heave $\leq 1 \text{ m}$, Pitch $\leq 7^{\circ}$	35.46 %	50.17 %	operable time by ~30% !
Heave $\leq 1 \text{ m}$, Pitch $\leq 7^{\circ}$ And Roll $\leq 5^{\circ}$	24.67 %	36.60%	

Meteorological Institute

Comparing 2 wave climates

Wind and waves at HYWIND and NORA10SW

Wind 'climate':

Not too different , more often higher winds in winters at HYWIND (blue)

Wave 'climate':

HS 6-month MEDIAN	SUMMER	WINTER
HYWIND	~ 1.5 m	~ 2 - 3 m
NORA10SW	~ 0.9 m	~ 1.4 m

• How wind turbines are modeled

Event based simulation

Model of wind turbine

Divide into maintainable components

Model of pitch controller

- How often the component fails Event: Equipment failure
- Effect of failure
 Reduced production
- How long the failure takes to fix
 Repair time

Repeat for all relevant parts of turbine

Data source and assumptions

- All reliability and repair data openly available from Reliawind
 - Based on SCADA data from turbine manufacturer
- Probably too many trips
- All fails reduce production to 0
- View results as relative comparison

Modelling access

Mobilization: Crew, parts, transport

- How often is the weather too poor for transfer of personnel?
- For how long is personnel transfer impossible?

• Interaction and results

Use of weather windows

- Average rate of weather windows used directly
 - 50th percentile
- Distribution of length
 - 50th percentile
 - Normal distribution
 - Half of length in standard variation

(OCEANEERING)

RESULTS:

- 2 vessels
- 1 wave climate
- Summer vs.
 Winter

RESULTS:

- 1 vessel
- 2 wave climates
 - SW
 - Hywind
- Summer vs.
 Winter

Conclusions

and 'conclusions'

- Significant effect of vessel choice, dependent on site
- Variance in access indicates usefulness of
 - Inspection
 - Long lead condition monitoring
 - Preventive maintenance
- Real, detailed reliability data for wind turbines are very difficult to get
 - NCS O&G experience is not directly applicable
 - Very different cost picture
 - Very different production dynamic

• Perspectives

- Standardisation reduces cost
 - Shale oil and gas experience useful
- Holistic approach
 - Wind farm state
 - Wind and weather
 - Grid
 - Support equipment
- Computation and prediction is cheap

An 800

Thank you for your attention!

