

Challenges Towards the Deployment of Offshore Grids

Nicolaos A. Cutululis

Power and productivity for a better world™

AALBORG UNIVERSITY DENMARK

VIT

Agenda

- Background
- Project structure and objectives
- Challenges (and some results)
- Summary

Aknowledgments

Georgios Stamatiou (Chalmers), Massimo Bongiorno, Ola Carlson Lorenzo Zeni (DONG), Bo Hesselbæk, Poul Sørensen (DTU), Anca D. Hansen Walid Ziad El-Khatib (DTU), Joachim Holbøll Vin Cent Tai , Atsede Gualu Endegnanew (NTNU), Kjetil Uhlen Niina Helistö (VTT), Juha Kiviluoma, Sanna Uski Torsten Lund (Energinet.dk), Lennart Harnefors (ABB)

••••

Offshore wind power development scenarios

Source: Pure Power report, EWEA, July 2011:

2020 Baseline scenario

2020 High scenario

Total wind power: 230 GW Offshore: **40 GW** Electricity consumption: 15.7% Total wind power: 265 GW Offshore: **55 GW** Electricity consumption: 18.4%

Offshore wind power development scenarios

Country	MW installed end 2020		MW installed end 2030	
	Baseline	High	Baseline	High
Belgium	2,156	2,156	3,956	3,956
Denmark	2,811	3,211	4,611	5,811
Estonia	0	0	1,695	1,695
Finland	846	1,446	3,833	4,933
France	3,275	3,935	5,650	7,035
Germany	8,805	12,999	24,063	31,702
Ireland	1,155	2,119	3,480	4,219
Latvia	0	0	1,100	1,100
Lithuania	0	0	1,000	1,000
Netherlands	5,298	6,298	13,294	16,794
Norway	415	1,020	3,215	5,540
Poland	500	500	500	500
Russia	0	0	500	500
Sweden	1,699	3,129	6,865	8,215
UK	13,711	19,381	39,901	48,071
TOTAL	40,671	56,194	113,663	141,071

Offshore wind power development scenarios

Offshore grid design

Local coordination

17-12-2014

Project DNA

- Technical research project
- Period: 2011 2016;
- Budget of 18.5 NOK (2.5 M€), 60% funded by NER
- Education: 6 PhDs, 1 PostDoc
- 10 partners from Nordic countries (DK, NO, SE, FI)
- Coordinator DTU Wind Energy, Denmark

Project partners

ENERGINET

CHALMERS

NTNU – Trondheim Norwegian University of Science and Technology **Statnett**

Overall objective

- to support the development of the VSC based HVDC technology for future large scale offshore grids
- to improve the opportunities for the technology to support power system integration of large scale offshore wind power

Project structure

Technology

- Component transients and protection (DTU Elektro)
- DC resonances in MT-HVDC grids Converter Interactions (Chalmers/ABB)

• Operational

- Grid operation and control (NTNU)
- Clustering of wind power (DTU Wind/DONG)

• Economic

- Optimal grid design NetOP (NTNU/VTT)
- Market impacts of different grid solutions WILMAR (VTT)

HVDC connected WPPs

- Development of offshore grids and WPPs are interdependent:
 - Offshore grids will develop if OWPPs cost is reduced
 - Offshore grids may reduce cost of OWPPs
 - Active support from WPPs to the operation and control of offshore grids
- However:
 - Cost is still very high \rightarrow economical break-even farther from shore
 - Although VSC-HVDC is mature, challenges have arisen when it is applied to WPP connection

Investigation on system services provision

L. Zeni et.al. from paper in Cigré session 2014

Ancillary services from OWPP

- Services with dynamics similar to AC
 - Frequency control WPPs can contribute
 - Power Oscillation Damping more demanding, but possible
- Voltage control
 - VSC-HVDC have excellent capabilities
- DC voltage control
 - Very fast dynamics, WPPs can contribute in steady-state
- Control of offshore AC grid
 - Integration of WPPs from different manufacturers and developers

Offshore grid design Find an optimal grid structure taking

17-12-2014

into account:

- Wind power variations ν
- Stochastic power prices
- On- and offshore load and generation scenarios
- Use formal optimization for a structured approach to finding good grid layouts
 - Difficult to solve "by inspection"
 - Huge number of possible grid structures
 - v \diamond Combinatorial problem solved efficiently by optimization tools
- Results: ν
 - Which cables to build ν
 - Capacity on the cables ν
- Gives valuable decision support, but: ν
- Must be combined with ν market/network model in an iterative 17 procedure

Offshore grid design

OffshoreDC Case Study : Baltic Sea 2030

Scenario:

- Wind farms: 97
- Price areas : 12
- Onshore substations: 18

Problems:

- 'How to connect the wind farms to the onshore grids?
- What are the effects on the market

No. combinations: $2^{N(N-1)/2}$

Clustering criteria:

- Windfarms belong to the same country
- Distance ± 200km

Total wind farm clusters: 22

norden

Nordic Energy Research

Baltic Sea 2030

www.offshoredc.dk

Baltic Sea 2030

17-12-2014

www.offshoredc.dk

Summary

- Offshore grid is technically feasible
- Main driver are the economic benefits
 - Strong offshore grids → increased flexiblity → lower the cost of energy
- Offshore grid likely to develop in modular steps from national developments
- The main technical challenges are related to the control and protection of offshore grids and WPPs
- Several other issues not addressed...
- (more) Research needed ...

CHALMERS

DTU Wind Energy Department of Wind Energy

DTU Electrical Engineering Department of Electrical Engineering

Power and productivity for a better world™

Statnett

