# Icing atlas and forecasts for Iceland

Hálfdán Ágústsson Icelandic Meteorological Office, University of Iceland and Belgingur, halfdana@gmail.com

With contributions from:

Árni Jón Elíasson (Landsnet), Guðmundur M. Hannesson (Efla), Egill Thorsteins (Efla), Ólafur Rögnvaldsson (Belgingur), Haraldur Ólafsson (University of Iceland and University of Bergen) and Björn Egil Nygaard (Kjeller vindteknikk)



# Wet-snow accretion



Photos: Árni Jón Elíasson

### In-cloud icing

Photo: Árni Jón Elíasson



Photos: Árni Jón Elíasson





How to model atmospheric icing?

In-cloud



Wet-snow

Photos: Árni Jón Elíasson

#### How to model atmospheric icing?





Sakamoto 2000

Makkonen (ISO-standard):  $dM/dt = \alpha_1 \alpha_2 \alpha_3 w A V$ 

w: mass of atmospheric water,

- A: collision area of cylinder
- V: wind speed
- $\alpha_1$ : Collision efficiency
- α<sub>2</sub>: Sticking efficiency
- $\alpha_{3}$ : Accretion efficiency



#### Typical sizes of rain and cloud droplets







# $α_3$ - Water mass may be lost if T≈<0°C



# Input data for modeling?

- Atmospheric data from a numerical model:
  - A-WRF version 3-4-1.
  - ETA PBL-scheme.
  - Thompsons microphysics.
  - Corine corrected landuse.
  - ECMWF atmospheric analysis.
  - 9-3-1 km horizontal resolution.
  - 55 levels in the vertical.

#### Numerical data is used as input to wet snow accretion models.

 Wind, temperature, liquid water content of snow, influx of atmospheric water





Photo: Árni Jón Elíasson

# An extreme wet snow event

- Extreme snowfall early in the autumn, 10. september 2012
- Temperatures 0-2°C at approx. 200-400 m
- Mean NW-wind > 20 m/s
- Accumulation up to 15 kg/m on suspended overhead powerlines
- Load cell in energized overhead transmission line





Elíasson, Ágústsson, Thorsteins and Hannesson (2013)

0.600 20 2.0 **FLOW** 287 285 1.5 Height [km] 0.800 283 Snow >1g/kg 281 1.0 279 1.200 0.5 0.400 Green: 0-Gæsafjöll isotherm 0.030 Reykjaheiði 045 Rain 0.1 g/kg 0.0 20 50 60 70 80 10 30 40 90 100 S N Distance [km]  $ms^{-1}$ 

#### Simulated atmospheric water in section





#### Maximum wet-snow load in 17 years Preliminary results, RÁV (WRF), 1994-2011, 3 km resolution



#### In-cloud icing at Hallormsstaðaháls







#### Simulated in-cloud icing Dec. 2000

2000-12-04 03:00:00







#### **In-cloud icing load during 17 years** In preparation, RÁV (WRF), 1994-2011, 3 km resolution



Maps of e.g. accretion frequency and max ice load are being prepared.

Shedding, height correction etc are being accounted for.



### To summarize

Atmospheric icing in Iceland is mainly an issue for overhead structures, i.e. powerlines, transmission towers and masts.

- Wet snow accretion:
  →Relatively rare and short (3-12 hrs).
  →Any elevation.
- In-cloud icing:
  - →May last weeks/months.
  - →Frequent above 600 m.
  - →Will be a problem for future wind turbines.



### To summarize and look forward

- Icing has been modeled with an accretion model, with input from an atmospheric model.
  - Preliminary icing maps and operational forecasts have been developed.
  - Systematic observations of ice loads were invaluable and are unique for Iceland.
  - Success is critically dependant on the accuracy of the meteorological variables:
    - Forecasts should be based on high-resolution ensembles.
    - Longer and higher resolution downscaled atmospheric datasets are needed.

## And some icing on the cake

Acknowledgements and thanks: TFI and the Nordic Energy industry, Landsnet, Landsvirkjun, Icelandic Met. Office and University of Iceland.

Photo: Ingvar Baldursson