

Does wind power forecasting skill depend on the spatial resolution of NWP models?

John Bjørnar Bremnes (MET Norway) Gregor Giebel (DTU)

Sites

Sites

- HyWind (2.3 MW)
- Smøla (150 MW, 68 turbines)
- Hitra (55.2 MW, 24 turbines)

Data

- Hourly energy production for each turbine
- 6 12 months of measurement data

2014-12-03

NWP models

Model	Model system	Version	Data	Spatial	Boundary	Lead times
			assimilation	resolution	model	
UM1	Unified Model	7.3	No	1 km	UM4	+3, +6,, +21h
UM4	Unified Model	7.3	No	4 km	H8	+3, +6,, +66h
H4	HIRLAM	7.1.3	No	4 km	H8	+3, +6,, +66h
H8	HIRLAM	7.1.3	Yes	8 km	EC16	+3, +6,, +66h
EC16	ECMWF IFS	36r1 - 37r2	Yes	16 km	-	+3, +6,, +66h
EC32	ECMWF IFS	36r1 - 37r2	Yes	32 km	-	+6, +12,, +66h

Forecasts data

- Wind speed and direction at 10 meter
- Initiated at 00 UTC
- Bilinearly interpolated to the location of each wind turbine
- Hourly averages

How are wind power forecasts made?

Physical (NWP) + statistical modelling

Historical data of

- NWP forecasts
- Wind power measurements

Statistical model

- «What does the production <u>tend to be</u> when the NWP forecast is ...?»
- Estimate relation between wind power and NWP forecasts
 - · Conditional distribution of wind power given NWP forecast variable(s)
- Forecasts in terms of
 - Expected production, quantiles, probability distributions

Statistical method

Meta-Gaussian approach

- Transform each variable to standard Gaussian
- Assume multivariate Gaussian
- Derive conditional distribution
 - · Wind power conditional on NWP output
- Retransform to original scale
- Forecasts in terms of probability distributions

Wind power forecast validation

Forecast	Validation score		
Probability distribution	Continuous Ranked Probability Score		
50 percentile	Mean Absolute Error		

Are wind forecasts at 10m appropriate?

Skill of wind power forecasts using wind at various levels in UM 1 km at a Smøla turbine

Direct forecasting of wind farm production

Data

- Power production measurement averaged over turbines
- NWP wind speed forecasts also averaged
- NWP wind direction at a central turbine

Meta-Gaussian approach applied

- Separately for each lead time
- Sliding training period of 60 last days/cases
- Probabilistic and 50 percentile forecasts evaluated

MAE of 50 percentile

Forecasting at turbine level followed by wind farm aggregation

Data

- at turbine level

Meta-Gaussian approach applied

- Separately for each lead time and turbine
- Sliding training period of 60 last days/cases
- Aggregation of 50 percentiles over turbines
- Only aggregated 50 percentiles evaluated

MAE of 50 percentile

Validation of 10m wind forecasts

against nacelle measurements

	Sm	øla	
	ME	SDE	MAE
UM4	-2.26	2.45	2.61
H4	-2.50	2.54	2.77
H8	-1.80	2.40	2.31
EC16	-0.21	2.14	1.63
EC32	-0.48	2.15	1.66

HyWind									
	ME	SDE	MAE						
H4	-0.52	2.67	2.13						
EC16	-0.81	2.62	2.16						
EC32	-0.78	2.65	2.17						

Statistics are averaged over lead times +6, +12, ..., +66h.

Validation of 10m wind speed forecasts

Against 31 coastal Norwegian synop stations (10m)

Feb – Sep 2011

Conclusions

Wind power forecasting skill seemed to

- not improve using high resolution NWPs
 - · global low resolution models slightly better!
 - fine scale features of high resolution NWPs do not seem to informative
- not be sensitive to the height level of wind forecasts

Future possibilities

- Repeat the study at other locations
 - ECMWF model not that good inland; mid/northern Sweden?
- Try even more temporal and spatial averaging
 - · possibly include wind forecast variation in the statistical model

Acknowledgements

Nordic Top-level Research Initiative Statkraft ASA Statoil ASA