



## Nordic wind power variability, forecast errors and impact on balancing needs

Icewind workshop 3<sup>rd</sup> December 2014, WP4 Hannele Holttinen, Jari Miettinen, Simo Rissanen

VTT Technical Research Centre of Finland



#### **Contents**

- Variability of wind power in Nordic countries smoothing impact
  - Holttinen, Hannele, Rissanen, Simo, Larsen, Xiaoli, Løvholm, Anne Line. 2013.
     Wind and load variability in the Nordic countries. VTT Technology: 96, Espoo, VTT, 98 p. + app. 33 p. <a href="http://www.vtt.fi/inf/pdf/technology/2013/T96.pdf">http://www.vtt.fi/inf/pdf/technology/2013/T96.pdf</a>
  - Holttinen, Hannele, Rissanen, Simo, Giebel, G., Larsen, X., Løvholm, A.-L., Berge, E.. 2012. Variability and smoothing effect of wind power production compared to load variability in the Nordic countries. WIW12, Lisbon, Portugal, 13 15 Nov. 2012
- Extreme case storms, how often and wide area?
- Forecast accuracy and aggregation benefits
  - Holttinen, Hannele, Miettinen, Jari, J., & Sillanpää, Samuli. 2013. Wind power forecasting accuracy and uncertainty in Finland. VTT Technology: 95, Espoo, VTT, 60 p. + app. 8 p. <a href="http://www.vtt.fi/inf/pdf/technology/2013/T95.pdf">http://www.vtt.fi/inf/pdf/technology/2013/T95.pdf</a>
- Wind power impacts on balancing
  - Miettinen, Jari J, Holttinen, Hannele, Giebel, G. 2014. Nordic Wind Power Forecast Errors: Benefits of Aggregation and Impact to Balancing Market Volumes.
     WIW2014, Berlin, 11 - 13 Nov, 2014.
  - Miettinen, Jari J, Holttinen, Hannele. 2013. Prediction Errors and Balancing Costs in Finland Using Short Term Prediction for Different Geographical Areas. WIW2013,
     London, 22 - 24 Oct, 2013.



#### **VARIABILITY ANALYSES**



### Smoothing effect— hourly time series of production



Year 2010 data (low wind year). Nordic max 75 %, min 1 %

02/12/2014 Nordic data: SE = DK and FI, NO = 50 % of DK



#### **Smoothing of variability**

- Hourly variability ± 20 %
   Finland, ± 18 %
   Denmark, ± 10 %
   Sweden, ± 8 % Nordic
- 15 min variability about half of hourly variability
- 4 hour variability 2-3 larger than hourly variability









6

#### **Production during peak load**

- Minimum, maximum and average wind power production during 10 highest peaks are shown with red error bars
- Single country as low as 2%. Nordic: 25 %, 30 % and 35 %. During the 10 largest peaks per year, 15-50 %





02/12/2014



#### **Storms**

- 3 years: largest event after Xmas 2011.
- Impact seen locally. Ramps less than 50 % of capacity in any country due to storm and no impact in the Nordic aggregated wind power output
  Storm 26.12.2011 and 27.12.2011





### Storm analysis: 14 years of model data ~115 m.a.g.l

| Area | gridpoints<br>(4x4 km) | Number of<br>land<br>points | Offshore |
|------|------------------------|-----------------------------|----------|
| SE1  | 7768                   | 6890                        | 11 %     |
| SE2  | 9670                   | 8483                        | 12 %     |
| SE3  | 12228                  | 8561                        | 30 %     |
| SE4  | 3823                   | 2421                        | 37 %     |
| DK1  | 4116                   | 2094                        | 49 %     |
| DK2  | 1730                   | 601                         | 65 %     |
| NO1  | 3454                   | 3219                        | 7 %      |
| NO2  | 4722                   | 3302                        | 30 %     |
| NO3  | 5777                   | 3919                        | 32 %     |
| NO4  | 12398                  | 6881                        | 44 %     |
| NO5  | 3026                   | 1794                        | 41 %     |
| FI   | 13009                  | 9872                        | 24 %     |

Areas divided as price areas of Nordic market.

Offshore % in areas



02/12/2014 8



Storms > 30 % of area – locally in Norway and

**Sweden** 





02/12/2014

#### Storms > 30 % of country area - only in Denmark

#### Average storm hours/month (storm >= 10% of area)



#### Average storm hours/month (storm >= 20% of area)



#### Average storm hours/month (storm >= 30% of area)



#### Average storm hours/month (storm >= 50% of area)



#### If only land-based wind power



Avg storm h/month (storm >= 10% of area), land only



Avg storm h/month (storm >= 20% of area), land only



Avg storm h/month (storm >= 30% of area), land only



#### Avg storm h/month (storm >= 50% of area), land only





#### FORECAST ERROR ANALYSES



### MAE on different sizes of areas and number of turbines







#### Forecast errors on different power levels in Finland, Sweden. Denmark and Nordic





# IMPACT OF WIND ON SYSTEM BALANCING IN NORDIC COUNTRIES



## How much is wind increasing the variability that power system sees now through the load



• Load and wind variability combined, with different amounts of o2/12/201 (scaled) wind power production (FI and NO = 50 % of DK)



#### Hourly variability – impact in balancing need



Wind penetration (% of yearly electricity demand)

• 99.9 % exceedance level used as confidence level. Increase in hourly variability of net load, compared to load is presented as increase in balancing needs

17



## Finland: imbalances with 4.5 % and 10 % wind share (from day-ahead forecast errors)





## Nordic countries: Imbalances in with 3.5 % and 10 % wind share (from day-ahead forecast errors)



02/12/2014



#### Planned work for Icewind end 2014-15

- Forecast errors: continue with analyses, two journal articles:
  - VTT/DTU/Kjeller: Smoothing impact, improvement of forecast accuracy
  - VTT: Impact on balancing: day-ahead and some hours ahead, in one country and Nordic wide, up-scaling existing wind, iImpact on balancing volumes (GWh) and prices/costs
- Storm analysis, one journal article (DTU, Kjeller, VTT)
- Impact of icing on forecasting accuracy (Kjeller, VTT)
- WILMAR model runs for power system impacts one article (VTT)

02/12/2014 20

